APPENDIX 1. Report on UK empirical critical loads for nitrogen, estimated for Special Areas of Conservation and submitted to the CCE in response to the 2006/07 call for data

UNITED KINGDOM

National Focal Centre

Jane Hall

Centre for Ecology and Hydrology Monks Wood, Abbots Ripton Huntingdon PE28 2LS Tel: +44 1487 772429 Fax: +44 1487 773467 Email: jrha@ceh.ac.uk http://critloads.ceh.ac.uk

Collaborating institutions

Bill Bealey Centre for Ecology and Hydrology Bush Estate, Penicuik Midlothian EH26 0QB Email: <u>bib@ceh.ac.uk</u>

Clare Whitfield Joint Nature Conservation Committee Monkstone House, City Road Peterborough, PE1 1JY Email: <u>clare.whitfield@jncc.gov.uk</u>

Simon Bareham Countryside Council for Wales Plas Penrhos, Ffordd Penrhos Bangor, LL57 2LQ Email: <u>s.bareham@ccw.gov.uk</u>

Zoe Masters Natural England Coldharbour Farm, Wye, Ashford, Kent, TN25 5DB Email: <u>zoe.masters@naturalengland.org.uk</u>

John Houlgreave Environment Agency Wales Cambria House, 29 Newport Road Cardiff, CF24 0TP Email: john.houlgreave@environment-agency.wales.gov.uk

Introduction

In 2004 the UK submitted critical loads of acidity and nutrient nitrogen for UK Biodiversity Action Plan broad habitats sensitive to acidification and/or eutrophication. For eutrophication, empirical critical loads of nutrient

nitrogen, as agreed at the Berne workshop (Achermann & Bobbink, 2003) and in the UK (Hall et al, 2004) were applied to all habitats except managed woodlands for which the mass balance equation was used. In response to this call for data no changes have been made to the UK critical loads for broad habitats and hence no new habitat data have been submitted.

This submission from the UK is focused on applying the empirical nutrient nitrogen critical loads to the Special Areas of Conservation (SACs), a sub-set of the UK's Natura 2000 sites. There are 611 SACs in the UK ranging in area from <0.01 km² to >1500 km², and designated to protect between one and 21 features (Annex I habitats or Annex II species) per site. In conjunction with the UK conservation agencies and the UK environment agencies a method has been developed to assign "site relevant" critical loads to the designated features of SACs. These data are being used by the environment agencies to enable the identification of sites at risk from critical load exceedance. This is to inform the assessment of the impacts of "plans and projects" in relation to the provisions of Article 6.3 of the Habitats Directive. The data are also currently being used to inform the UK's air pollution assessment for the purposes of reporting on Favourable Conservation Status under Article 17 of the Habitats Directive.

This database has been submitted as an example of how empirical nutrient nitrogen critical loads may be applied to designated areas. This reflects the increasing demand for such an approach through drivers such as the Habitats Directive. It should be noted that if these data are used in conjunction with the UK habitat critical loads submitted in 2004 there will be some duplication of the total ecosystem areas.

Methods

The method for assigning site relevant critical loads was as follows:

- The individual features (Annex I habitats or Annex II plant species) were assessed in terms of their sensitivity to eutrophication; 83 of the the 90 features (77 habitats, 13 plant species) associated with the UK SACs are considered sensitive to eutrophication. "Non-plant" species listed in Annex II have not been included in this assessment.
- The corresponding EUNIS habitat class(es) of the sensitive features were identified. This can be done using either the EUNIS web site (http://eunis.eea.europa.eu/index.jsp) or the the Habitats Dictionary of the National Biodiversity Network (http://www.nbn.org.uk/habitats/); both sources have lookup tables from Annex I to EUNIS or vice versa.
- Where the sensitive feature was a plant species it was related to the EUNIS habitat in which it occurs.
- If nutrient nitrogen critical loads were available for the EUNIS class, they were applied. Where this was not the case, the critical loads for a similar EUNIS class were applied where appropriate (ie, where there was some "equivalence" between habitats). However, for 10 of the features (8 habitats, 2 plant species) identified as being sensitive to eutrophication there are currently no appropriate critical loads available (Table 1).
- The critical load values identified by EUNIS class above were assigned to each corresponding feature for each SAC, ie, no additional site-specific or spatial information was used in the assignment.

Table 1. Annex I habitats and Annex II plant species found in the UK and for which there are no appropriate	
nutrient nitrogen critical loads available	

11 1. 7 4 1 . 1 .1 .1 1112

Annex I habitats	Interest Name
Annex II species	
H1230	Vegetated sea cliffs of the Atlantic and Baltic coasts
H1340	Inland salt meadows
H2160	Dunes with Hippophae rhamnoides (sea-buckthorn)
H3140	Hard oligo-mesotrophic waters with benthic vegetation of Chara ssp.
H3150	Natural eutrophic lakes often dominated by pondweed
H3170	Mediterranean temporary ponds
H3180	Turloughs

H3260	Water courses of plain to montane levels with floating vegetation (water-crowfoot)
S1390	Marsupella profunda (Western rustwort)
S1833	Najax flexilis (Slender naiad)

Table 2 below lists the remaining 73 sensitive designated features together with the EUNIS class used to set the critical load values. For consistency with the habitat critical loads data previously submitted, the agreed UK "mapping values" have been used (Hall et al, 2003a; 2003b); where no mapping value had previously been defined the mid-range value has been applied. It should be noted that the environment agencies in their site screening assessments have applied a more precautionary approach and used the value at the lower end of each range.

As stated above the number of features associated with an individual site varies, however, information on the location and area occupied by each feature within the sites is not currently readily available. Therefore for this data submission the "EcoArea" associated with each data record is based on the total SAC site area divided by the number of features for which nutrient nitrogen critical loads are available. Further, for some sites more than one feature is associated with the same EUNIS class; where this is the case the feature areas (as defined above) have been aggregated to enable the data to be submitted as a single record per EUNIS class per SAC.

Annex I habitat	EUNIS class (same or most similar	CLnutN	UK Mapping
Annex II species	to Annex I habitat)	$(\text{kg N ha}^{-1} \text{ yr}^{-1})$	Value
-			$(\text{kg N ha}^{-1} \text{ yr}^{-1})$
H1130 Estuaries	A2.64/A2.65 Pioneer & low-mid	30-40	35*
	salt marshes		
H1140 Mudflats & sandflats	A2.64/A2.65 Pioneer & low-mid	30-40	35*
	salt marshes		
H1150 Coastal lagoons	A2.64/A2.65 Pioneer & low-mid	30-40	35*
	salt marshes		
H1220 Perennial vegetation of stony	B1.3 Shifting coastal dunes	10-20	15
banks			
H1310 Salicornia & other annuals	A2.64/A2.65 Pioneer & low-mid	30-40	35*
on mud & sand	salt marshes		
H1320 Spartina swards	A2.64/A2.65 Pioneer & low-mid	30-40	35*
	salt marshes		
H1330 Atlantic salt meadows	A2.64/A2.65 Pioneer & low-mid	30-40	35*
	salt marshes		
H1420 Mediterranean & thermo-	A2.64/A2.65 Pioneer & low-mid	30-40	35*
Atlantic halophilous scrubs	salt marshes		
H2110 Embryonic shifting dunes	B1.3 Shifting coastal dunes	10-20	15
H2120 Shifting dunes along shore	B1.3 Shifting coastal dunes	10-20	15
(Ammophila arenaria)			
H2130 Fixed dunes with herbaceous	B1.4 Coastal stable dune grasslands	10-20	15
vegetation			
H2140 Decalcified fixed dunes	B1.5 Coastal dune heaths	10-20	15*
(Empetrum nigrum)			
H2150 Atlantic decalcified fixed	B1.5 Coastal dune heaths	10-20	15*
dunes			
H2170 Dunes (Salix repens ssp.	B1.8 Moist to wet dune slacks	10-25	17.5*
Argentea)			
H2190 Humid dune slacks	B1.8 Moist to wet dune slacks	10-25	17.5*
H21A0 Machairs	B1.4 Coastal stable dune grasslands	10-20	15

Table 2. EUNIS habitat critical loads assigned to Annex I habitats and species

	1	1	
H2250 Coastal dunes (Juniperus	B1.5 Coastal dune heaths	10-20	15*
spp.)			
H2330 Inland dunes (open	E1.94 Inland dune pioneer	10-20	15*
Corynephorus & Agrostis)	grasslands		
H3110 Oligotrophic waters	C1.1 Permanent oligotrophic waters:	5-10	7.5*
containing few minerals	softwater lakes		
H3130 Oligotrophic to mesotrophic	C1.1 Permanent oligotrophic waters:	5-10	7.5*
standing waters with vegetation	softwater lakes		
H3160 Natural dystrophic lakes &	C1.1 Permanent oligotrophic waters:	5-10	7.5*
ponds	softwater lakes		
H4010 Northern Atlantic wet heaths	F4.11 Northern wet heath: Erica	10-25	15
(Erica tetralix)	tetralix dominated		
H4020 Temperate Atlantic wet	F4.11 Northern wet heath: Erica	10-25	15
heaths (Erica cilliaris & tetralix)	tetralix dominated		
H4030 European dry heaths	F4.2 Dry heaths	10-20	12
H4040 Dry Atlantic coastal heaths	F4.2 Dry heaths	10-20	12
(Erica vegans)	1 4.2 Dry neuris	10 20	12
H4060 Alpine & boreal heaths	F2 Arctic, alpine, subalpine scrub	5-15	10*
114000 Alpine & borear heatis	habitats	5-15	10.
114080 Sub Anotic Solin and Samp		5-15	10*
H4080 Sub-Arctic Salix spp. Scrub	F2 Arctic, alpine, subalpine scrub	5-15	10**
	habitats	15.05	20
H5110 Stable xerothermophilous	E1.26 Sub-Atlantic semi-dry	15-25	20
formations (Buxus sempervirens)	calcareous grasslands		
H5130 Juniperus communis on	F4.2 Dry heaths	10-20	12
heaths or calcareous grasslands			
H6130 Calaminarian grasslands of	E1.26 Sub-Atlantic semi-dry	15-25	20
Violetalia calaminariae	calcareous grasslands		
H6150 Siliceous alpine & boreal	E4.3 Alpine & subalpine grasslands	10-15	12.5*
grasslands			
H6170 Alpine & subalpine	E4.3 Alpine & subalpine grasslands	10-15	12.5*
calcareous grasslands			
H6210 Semi-natural dry grasslands	E1.26 Sub-Atlantic semi-dry	15-25	20
& scrubland facies (calcareous)	calcareous grasslands		
H6211 Semi-natural dry grasslands	E1.26 Sub-Atlantic semi-dry	15-25	20
& scrubland facies (orchid sites)	calcareous grasslands		
H6230 Species-rich Nardus	E1.7 Non-mediterranean dry acid &	10-20	15
grassland (siliceous, mountain)	neutral closed grassland		
H6410 Molinia meadows	E3.51 Moist & wet oligotrophic	15-25	20*
(calcareous, peaty, clay-silt soils)	grasslands: Molinia caerulea	10 20	
H6430 Hydrophilous tall herb fringe	E4.3 Alpine & subalpine grasslands	10-15	12.5*
communities (plains, montane)		10 15	12.0
H6510 Lowland hay meadows	E2.2 Low & medium altitude hay	20-30	25*
	meadows	20-30	23
H6520 Mountain hay meadows	E2.3 Mountain hay meadows	10-20	15*
-		5-10	10
H7110 Active raised bogs	D1 Raised & blanket bogs		
H7120 Degraded raised bogs	D1 Raised & blanket bogs	5-10	10
capable of natural regeneration		5.10	10
H7130 Blanket bogs	D1 Raised & blanket bogs	5-10	10
H7140 Transition mires & quaking	D1 Raised & blanket bogs	5-10	10
bogs			
H7150 Depressions on peat		1 - · · -	1.0
	D1 Raised & blanket bogs	5-10	10
substrates (Rhynchosporion) H7210 Calcareous fens (Cladium	D1 Raised & blanket bogs D4.1 Rich fens	5-10	10

mariscus)			
H7220 Petrifying springs with tufa	D4.2 Mountain rich fens	15-25	20*
formation			
H7230 Alkaline fens	D4.1 Rich fens	15-35	25*
H7240 Alpine pioneer formations	D4.2 Mountain rich fens	15-25	20*
(Caricion bicoloris-atrofuscae)			
H8110 Siliceous scree of montane	F2 Arctic, alpine, subalpine scrub	5-15	10*
to snow levels	habitats		
H8120 Calcareous & calcshist	F2 Arctic, alpine, subalpine scrub	5-15	10*
screes of montane/alpine levels	habitats		
H8210 Calcareous rocky slopes with	E4.3 Alpine & subalpine grasslands	10-15	12.5*
chasmophytic vegetation			
H8220 Siliceous rock slopes with	F2 Arctic, alpine, subalpine scrub	5-15	10*
chasmophytic vegetation	habitats		
H8240 Limestone pavements	E4.3 Alpine & subalpine grasslands	10-15	12.5*
H9120 Taxus in the shrublayer	G Temperate & boreal forests:	10-15	12
	ground flora		
H9130 Asperulo-Fagetum beech	G Temperate & boreal forests:	10-15	12
forests	ground flora		
H9160 Sub-Atlantic & medio-	G Temperate & boreal forests:	10-15	12
European oak oak-hornbeam forests	ground flora		
H9180 Tilio-Acerion forests of	G Temperate & boreal forests:	10-15	12
slopes, screes & ravines	ground flora		
H9190 Old acidophilous oak with	G Temperate & boreal forests:	10-15	12
Quercus robur on sandy plains	ground flora		
H91A0 Old sessile oak with Ilex &	G Temperate & boreal forests:	10-15	10
Blechnum (British Isles)	epiphytic lichens		
H91C0 Caledonian forest	G Temperate & boreal forests:	10-15	12
	ground flora		
H91D0 Bog woodland	D1 Raised & blanket bogs	5-10	10
H91J0 Taxus baccata woods (British	G Temperate & boreal forests:	10-15	12
Isles)	ground flora		
S1386 Buxbaumia viridis	G Temperate & boreal forests:	10-15	12
	ground flora		
S1393 Drepanocladus	D2.2 Poor fens	10-20	15
(Hamatocaulis) vernicosus			
S1395 Petalophyllum ralfsii	B1.8 Moist to wet dune slacks	10-25	17.5*
S1421 Trichomanes speciosum	G Temperate & boreal forests:	10-15	12
	ground flora		
S1441 Rumex rupestris	B1.8 Moist to wet dune slacks	10-25	17.5*
S1528 Saxifraga hirculus	E4.3 Alpine & subalpine grasslands	10-15	12.5*
S1614 Apium repens	E2.2 Low & medium altitude hay	20-30	25*
	meadows		
S1654 Gentianella anglica	E1.26 Sub-Atlantic semi-dry	15-25	20
	calcareous grassland		
S1831 Luronium natans	C1.1 Permanent oligotrophic waters:	5-10	7.5*
	softwater lakes		
S1902 Cypripedium calceolus	G Temperate & boreal forests:	10-15	12
	ground flora		
S1903 Liparis loeselii	B1.8 Moist to wet dune slacks	10-25	17.5*

* No UK Mapping Value set for this EUNIS class, so mid-range value applied.

Conclusions

- This method enabled empirical nutrient nitrogen critical loads to be assigned to 73 out of the 83 designated features (Annex I habitats or Annex II plant species) within the UK SACs considered to be sensitive to eutrophication. Ten features were identified for which it was not possible to assign appropriate critical loads.
- In terms of sites, of the 611 SACs in the UK, 516 contain features (Annex I habitats or Annex II plant species) sensitive to eutrophication. Using the methodology described above it was possible to assign nutrient nitrogen critical loads to the features of 472 of the SACs in the UK.
- Whilst it is possible using the available databases on the web to relate the Annex I habitats to their corresponding EUNIS classes, there may not always be a direct relationship or correspondence. In addition, nutrient nitrogen critical loads are not available for all the EUNIS classes identified and expert opinion has been used to select a similar class where possible.
- For many of the EUNIS classes in Table 2 a critical load value within each range had previously been agreed (ie, UK Mapping Value) for use in data submissions and for exceedance calculations; where this was not the case the mid-range value has been applied. However, there is still some uncertainty about where within the range the critical load should be set. The UK environment agencies have chosen to use the range minima in their assessments because of the precautionary approach enshrined within Article 6.3 of the Habitats Regulations. Ashmore & Hicks (2006) have proposed a decision support matrix incorporating some of the endorsement theory approaches developed by Wadsworth & Hall (2007) for acidity. This method would make use of the Ellenberg scores for fertility (N), acidity (R), and moisture (F) identified for given classes of the National Vegetation Classification (Rodwell, 1991), together with user inputs on rare species occurrence and management activities. By assigning a "weight of evidence" to each of these parameters at the site-level an overall endorsement for using the critical load at the lower, middle or upper part of the range can be determined. Such approaches will be examined further within the UK and their applicability and ease of use ascertained.

References

- Achermann, B. & Bobbink, R. (eds.) 2003. Empirical Critical Loads for Nitrogen. Proceedings of an Expert Workshop (Berne, 11-13 November 2002) held under the UNECE Convention on Long-range Transboundary Air Pollution. Environmental Documentation No. 164, Air. Swiss Agency for the Environment, Forests and Landscape SAEFL, Berne.
- Ashmore, M. & Hicks, K. 2006. Development of a Decision Support Matrix for Site Specific Critical Loads for Nutrient Nitrogen. Draft Consultation document. Available from the SEI, York.
- Hall, J., Ullyett, J., Heywood, L. Broughton, R., Fawehinmi, J. & 31 UK experts. 2003a. Status of UK Critical Loads: Critical Loads Methods, Data and Maps. February to Defra (Contract EPG 1/3/185). http://critloads.ceh.ac.uk
- Hall, J., Ullyett, J., Heywood, L., Broughton, R. & Fawehinmi, J. 2003b. UK National Focal Centre report. In: Modelling and Mapping of Critical Thresholds in Europe. Status Report 2003, Coordination Centre for Effects (eds. M. Posch, J.-P. Hettelingh, J. Slootweg & R.J. Downing). RIVM Report No. 259101013/2003. RIVM, Bilthoven, Netherlands. p 114-124. <u>http://www.mnp.nl/cce/publ</u>
- Hall, J., Ullyett, J., Heywood, L., Broughton, R. & 12 UK experts. 2004. Update to: The Status of UK Critical Loads Critical Loads Methods, Data and Maps. February 2004. Report to Defra (Contract EPG 1/3/185). <u>http://critioads.ceh.ac.uk</u>

Rodwell, J.S. (editor): 1991. British Plant Communities. 5 volumes. Cambridge University Press, Cambridge.

Wadsworth, R.A. & Hall, J.R. 2007. Setting Site Specific Critical Loads: An Approach Using Endorsement Theory and Dempster-Shafer. Water, Air and Soil Pollution: Focus. ISSN 1567-7230 (Print) 1573-2940 (Online). DOI 10.1007/s11267-006-9084-8. Springer, Netherlands.